Sunday, February 26, 2017

Principles of calibration

 

 

Calibration consists of comparing the output of the instrument or sensor under test against the output of an instrument of known accuracy when the same input (the measured quantity) is applied to both instruments.Calibration consists of comparing the output of the instrument or sensor under test against the output of an instrument of known accuracy when the same input (the measured quantity) is applied to both instruments. This procedure is carried out for a range of inputs covering the whole measurement range of the instrument or sensor. Calibration ensures that the measuring accuracy of all instruments and sensors used in a measurement system is known over the whole measurement range, provided that the calibrated instruments and sensors are used in environmental conditions that are the same as those under which they were calibrated. For use of instruments and sensors under different environmental conditions, appropriate correction has to be made for the ensuing modifying inputs. Whether applied to instruments or sensors, calibration procedures are identical, and hence only the term instrument will be used for the rest of this chapter, with the understanding that whatever is said for instruments applies equally well to single measurement sensors. Instruments used as a standard in calibration procedures are usually chosen to be of greater inherent accuracy than the process instruments that they are used to calibrate. Because such instruments are only used for calibration purposes, greater accuracy can often be achieved by specifying a type of instrument that would be unsuitable for normal process measurements. For instance, ruggedness is not a requirement, and freedom from this constraint opens up a much wider range of possible instruments. In practice, high-accuracy, null-type instruments are very commonly used for calibration duties, because the need for a human operator is not a problem in these circumstances. Instrument calibration has to be repeated at prescribed intervals because the characteristics of any instrument change over a period. Changes in instrument characteristics are brought about by such factors as mechanical wear, and the effects of dirt, dust, fumes, chemicals and temperature changes in the operating environment. To a great extent, the magnitude of the drift in characteristics depends on the amount of use an instrument receives and hence on the amount of wear and the length of time that it is subjected to the operating environment. However, some drift also occurs even in storage, as a result of ageing effects in components within the instrument. Determination of the frequency at which instruments should be calibrated is dependent upon several factors that require specialist knowledge. If an instrument is required to measure some quantity and an inaccuracy of ±2% is acceptable, then a certain amount of performance degradation can be allowed if its inaccuracy immediately after recalibration is ±1%. What is important is that the pattern of performance degradation be quantified, such that the instrument can be recalibrated before its accuracy has reduced to the limit defined by the application. Susceptibility to the various factors that can cause changes in instrument characteristics varies according to the type of instrument involved. Possession of an in-depth knowledge of the mechanical construction and other features involved in the instrument is necessary in order to be able to quantify the effect of these quantities on the accuracy and other characteristics of an instrument. The type of instrument, its frequency of use and the prevailing environmental conditions all strongly influence the calibration frequency necessary, and because so many factors are involved, it is difficult or even impossible to determine the required frequency of instrument recalibration from theoretical considerations. Instead, practical experimentation has to be applied to determine the rate of such changes. Once the maximum permissible measurement error has been defined, knowledge of the rate at which the characteristics of an instrument change allows a time interval to be calculated that represents the moment in time when an instrument will have reached the bounds of its acceptable performance level. The instrument must be recalibrated either at this time or earlier. This measurement error level that an instrument reaches just before recalibration is the error bound that must be quoted in the documented specifications for the instrument. A proper course of action must be defined that describes the procedures to be followed when an instrument is found to be out of calibration, i.e. when its output is different to that of the calibration instrument when the same input is applied. The required action depends very much upon the nature of the discrepancy and the type of instrument involved. In many cases, deviations in the form of a simple output bias can be corrected by a small adjustment to the instrument (following which the adjustment screws must be sealed to prevent tampering). In other cases, the output scale of the instrument may have to be redrawn, or scaling factors altered where the instrument output is part of some automatic control or inspection system. In extreme cases, where the calibration procedure shows up signs of instrument damage, it may be necessary to send the instrument for repair or even scrap it. Whatever system and frequency of calibration is established, it is important to review this from time to time to ensure that the system remains effective and efficient. It may happen that a cheaper (but equally effective) method of calibration becomes available with the passage of time, and such an alternative system must clearly be adopted in the interests of cost efficiency. However, the main item under scrutiny in this review is normally whether the calibration interval is still appropriate. Records of the calibration history of the instrument will be the primary basis on which this review is made. It may happen that an instrument starts to go out of calibration more quickly after a period of time, either because of ageing factors within the instrument or because of changes in the operating environment. The conditions or mode of usage of the instrument may also be subject to change. As the environmental and usage conditions of an instrument may change beneficially as well as adversely, there is the possibility that the recommended Calibration interval may decrease as well as increase.

No comments:

Post a Comment