Sunday, February 26, 2017

Intelligent devices

 

The term ‘intelligent device’ is used to describe a package containing either a complete measurement system, or else a component within a measurement system, which incorporates a digital processor. Processing of the output of measurement sensors to correct for errors inherent in the measurement process brings about large improvements in measurement accuracy. Such intelligent devices are known by various names such as intelligent instrument, smart sensor and smart transmitter. There is no formal definition for any of these names, and there is considerable overlap between the characteristics of particular devices and the name given to them. The discussion below tries to lay out the historical development of intelligent devices, and it summarizes the general understanding of the sort of characteristics possessed by the various forms of intelligent device.

 

Intelligent instruments

 

The first intelligent instrument appeared over 20 years ago, although high prices when such devices first became available meant that their use within measurement systems grew very slowly initially. The processor within an intelligent instrument allows it to apply pre-programmed signal processing and data manipulation algorithms to measurements. One of the main functions performed by the first intelligent instruments to become available was compensation for environmental disturbances to measurements that cause systematic errors. Thus, apart from a primary sensor to measure the variable of interest, intelligent instruments usually have one or more secondary sensors to monitor the value of environmental disturbances. These extra measurements allow the output reading to be corrected for the effects of environmentally induced errors, subject to the following pre-conditions being satisfied:

 

(a) The physical mechanism by which a measurement sensor is affected by ambient condition changes must be fully understood and all physical quantities that affect the output must be identified.

(b) The effect of each ambient variable on the output characteristic of the primary sensor must be quantified.

(c) Suitable secondary sensors for monitoring the value of all relevant environmental variables must be available that will operate satisfactorily in the prevailing environmental conditions.

 

Condition (a) above means that the thermal expansion and contraction of all elements within a sensor must be considered in order to evaluate how it will respond to ambient temperature changes. Similarly, the sensor response, if any, to changes in ambient pressure, humidity, gravitational force or power supply level (active instruments) must be examined. Quantification of the effect of each ambient variable on the characteristics of the measurement sensor is then necessary, as stated in condition (b). Analytic quantification of ambient condition changes from purely theoretical consideration of the construction of a sensor is usually extremely complex and so is normally avoided. Instead, the effect is quantified empirically in laboratory tests where the output characteristic of the sensor is observed as the ambient environmental conditions are changed in a controlled manner. One early application of intelligent instruments was in volume flow rate measurement, where the flow rate is inferred by measuring the differential pressure across an orifice plate placed in a fluid-carrying pipe. The flow rate is proportional to the square root of the difference in pressure across the orifice plate. For a given flow rate, this relationship is affected both by the temperature and by the mean pressure in the pipe, and changes in the ambient value of either of these cause measurement errors. A typical intelligent flowmeter therefore contains three sensors, a primary one measuring pressure difference across the orifice plate and secondary ones measuring absolute pressure and temperature. The instrument is programmed to correct the output of the primary differential-pressure sensor according to the values measured by the secondary sensors, using appropriate physical laws that quantify the effect of ambient temperature and pressure changes on the fundamental relationship between flow and differential pressure.

 

Even 20 years ago, such intelligent flow measuring instruments achieved typical inaccuracy levels of ±0.1%, compared with ±0.5% for their non-intelligent equivalents. Although automatic compensation for environmental disturbances is a very important attribute of intelligent instruments, many versions of such devices perform additional functions, and this was so even in the early days of their development. For example, the orifice-plate flowmeter just discussed usually converts the square root relationship between flow and signal output into a linear one, thus making the output much easier to interpret. Other examples of the sort of functions performed by intelligent instruments are:

 

correction for the loading effect of measurement on the measured system
signal damping with selectable time constants
switchable ranges (using several primary sensors within the instrument that each measure over a different range)
switchable output units (e.g. display in Imperial or SI units)
linearization of the output
self-diagnosis of faults
remote adjustment and control of instrument parameters from up to 1500 metres away via 4-way, 20mA signal lines.
 

These features will be discussed in greater detail under the later headings of smart sensors and smart transmitters. Over the intervening years since their first introduction, the size of intelligent instruments has gradually reduced and the functions performed have steadily increased. One particular development has been the inclusion of a microprocessor within the sensor itself, in devices that are usually known as smart sensors. As further size reduction and device integration has taken place, such smart sensors have been incorporated into packages with other sensors and signal processing circuits etc. Whilst such a package conforms to the definition of an intelligent instrument given previously, most manufacturers now tend to call the package a smart transmitter rather than an intelligent instrument, although the latter term has continued in use in some cases.

No comments:

Post a Comment